A Heterodimer of Thioredoxin and IB2 Cooperates with Sec18p (NSF) to Promote Yeast Vacuole Inheritance
نویسندگان
چکیده
Early in S phase, the vacuole (lysosome) of Saccharomyces cerevisiae projects a stream of vesicles and membranous tubules into the bud where they fuse and establish the daughter vacuole. This inheritance reaction can be studied in vitro with isolated vacuoles. Rapid and efficient homotypic fusion between salt-washed vacuoles requires the addition of only two purified soluble proteins, Sec18p (NSF) and LMA1, a novel heterodimer with a thioredoxin subunit. We now report the identity of the second subunit of LMA1 as I(B)2, a previously identified cytosolic inhibitor of vacuolar proteinase B. Both subunits are needed for efficient vacuole inheritance in vivo and for the LMA1 activity in cell extracts. Each subunit acts via a novel mechanism, as the thioredoxin subunit is not acting through redox chemistry and LMA1 is still needed for the fusion of vacuoles which do not contain proteinase B. Both Sec18p and LMA1 act at an early stage of the in vitro reaction. Though LMA1 does not stimulate Sec18p-mediated Sec17p release, LMA1 cannot fulfill its function before Sec18p. Upon Sec17p/Sec18p action, vacuoles become labile but are rapidly stabilized by LMA1. The action of LMA1 and Sec18p is thus coupled and ordered. These data establish LMA1 as a novel factor in trafficking of yeast vacuoles.
منابع مشابه
Cooperates with Sec18p (NSF) to Promote Yeast Vacuole Inheritance
Early in S phase, the vacuole (lysosome) of Saccharomyces cerevisiae projects a stream of vesicles and membranous tubules into the bud where they fuse and establish the daughter vacuole. This inheritance reaction can be studied in vitro with isolated vacuoles. Rapid and efficient homotypic fusion between saltwashed vacuoles requires the addition of only two purified soluble proteins, Sec18p (NS...
متن کاملSec18p (NSF)-Driven Release of Sec17p (α-SNAP) Can Precede Docking and Fusion of Yeast Vacuoles
and the plasma membrane in epithelial cells requires S.cerevisiae inherits its vacuole by projecting vacuoleNSF for the basolateral route, but probably not for the derived membrane vesicles and tubules into the bud, apical route (Ikonen et al., 1995). Homotypic ER to ER where they fuse to establish the daughter vacuole. fusion and nuclear fusion during yeast mating depend on This homotypic fusi...
متن کاملLMA1 Binds to Vacuoles at Sec18p (NSF), Transfers upon ATP Hydrolysis to a t-SNARE (Vam3p) Complex, and Is Released during Fusion
Vacuole fusion requires Sec18p (NSF), Sec17p (alpha-SNAP), Ypt7p (GTP binding protein), Vam3p (t-SNARE), Nyv1p (v-SNARE), and LMA1 (low Mr activity 1, a heterodimer of thioredoxin and I(B)2). LMA1 requires Sec18p for saturable, high-affinity binding to vacuoles, and Sec18p "priming" ATPase requires both Sec17p and LMA1. Either the sec18-1 mutation and deletion of I(B)2, or deletion of both I(B)...
متن کاملDocking of Yeast Vacuoles Is Catalyzed by the Ras-like GTPase Ypt7p after Symmetric Priming by Sec18p (NSF)
Vacuole inheritance in yeast involves the formation of tubular and vesicular "segregation structures" which migrate into the bud and fuse there to establish the daughter cell vacuole. Vacuole fusion has been reconstituted in vitro and may be used as a model for an NSF-dependent reaction of priming, docking, and fusion. We have developed biochemical and microscopic assays for the docking step of...
متن کاملSec18p (NSF)-driven release of Sec17p (alpha-SNAP) can precede docking and fusion of yeast vacuoles.
S. cerevisiae inherits its vacuole by projecting vacuole-derived membrane vesicles and tubules into the bud, where they fuse to establish the daughter vacuole. This homotypic fusion event can be assayed in vitro. It requires Sec17p and Sec18p, the homologs of the mammalian alpha-SNAP and NSF, which cooperate in multiple steps of membrane trafficking. We now report that Sec17p, Sec18p, and ATP a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 136 شماره
صفحات -
تاریخ انتشار 1997